Healthcare Landing Page That Sells


Imagine your website as a guide for people looking for healthcare answers. But, too much text, complex navigation, and poor mobile layout can stop them from getting the help they need. Who are these visitors about to pick your services, and how do we ensure they find what they're looking for?
- 77% initiate their healthcare journey via search engines.
- 60% of these explorers click through to websites brimming with the healthcare insights they're after.
- 71% feel disappointed with healthcare websites that fall short on information.
These figures send a clear message to healthcare providers: A strong online presence is vital. To engage and keep potential patients' trust, your website should be accessible and filled with the information they need.
What is a Good Healthcare Landing Page?
A landing page has two key goals: promoting and advertising. Here, we put together a short guide to share our insights, knowledge, and everything else you need to create a high-converting healthcare landing page.
Mobile-Friendliness
Studies show that the average American checks their phone every 12 minutes. Nowadays, a mobile-friendly website is a must-have for every business.
Responsive Web Design (RWD) makes your website attractive for users with any screen, device, or browser. It automatically adjusts the layout and content based on the screen size, ensuring a user-friendly experience on phones and tablets, without the need for zooming or extensive scrolling.
Clear Content
Ensure your content is focused and minimalistic, directly conveying your business's offerings. A healthcare landing page must be clean, emphasizing key points.
Include a prominent Call-to-Action (CTA) - a brief, compelling phrase that encourages visitors to take the next step. This CTA must stand out, guiding users clearly on what to do.
Remember, visitors quickly form opinions; make those initial moments count with straightforward information, ensuring they find what they need swiftly.
Direct Navigation
To enhance your landing page's navigation, focus on a seamless user experience. Use an active voice to directly guide visitors to their desired information through simple, intuitive steps.
Incorporate clear labels, a straightforward layout, and visual cues to ensure easy navigation.
Regularly test your navigation with real users to identify and fix any hurdles, ensuring your landing page is as direct and user-friendly as possible.
Top 5 CMS Platforms to Create a Landing Page
Building an effective landing page is key to a successful marketing strategy, and selecting the right CMS platform can greatly enhance your ability to connect with your audience. Here's a top list of CMS platforms ideal for crafting landing pages, each providing distinct features to meet different requirements:
1. WordPress
The most popular CMS in the world, known for its flexibility and extensive plugin ecosystem. WordPress offers both simple functionalities for beginners and advanced solutions for experienced developers and complex products.
With over 58,000 plugins and thousands of themes, WordPress offers rich opportunities for customization. You can use SEO and analytic tools, social media integration, and contact forms — everything you need for a healthcare landing page.
2. Wix
Wix is renowned for its simplicity, featuring a drag-and-drop interface and stylish templates. It offers an intuitive platform that requires no prior coding or design knowledge.
Ideal for small business owners and web development & design newbies. Wix’s simple platform will enable even a private healthcare practitioner to create a professional-looking landing page.
3. Velo by Wix
For more experienced users, Wix offers an advanced Velo development platform. It provides rich customization options, allowing direct editing of HTML, CSS, and JavaScript, giving full control over the website's look and feel.
Velo also allows for the integration of APIs and external databases, making it possible to build dynamic, data-driven healthcare landing pages.
4. HubSpot CMS
HubSpot CMS shines by integrating powerful marketing tools directly with website management. This includes email marketing, SEO strategies, and other inbound marketing techniques, all within one platform.
It's ideal for marketers and businesses looking for a single platform to manage their website creation and ongoing marketing activities.
5. Webflow
Webflow offers complete control over website design and interactive features through an easy-to-use visual editor, so you don't need to know how to code. It's great for designers and developers who want the freedom to create without complexity.
With Webflow, you can design unique healthcare landing pages that stand out and communicate effectively, thanks to its detailed design capabilities and responsive design options.
Conclusion
The landing page is the connecting bridge between the online, digital marketing message, and the visitors’ next step. The landing page must look good on a smartphone, have informative content, and clear navigation.
For medical businesses and practitioners, it’s essential to have a landing page for each service they’re offering. Are you a doctor, a medical center, or a big healthcare corporation? Contact us for a consultation on attracting more patients.
FAQ
Responsive Web Design makes your site adjust smoothly across different devices, ensuring a great experience on phones, tablets, and desktops. This is essential for attracting and keeping visitors engaged.
Platforms like WordPress, Wix, HubSpot CMS, and Webflow are popular choices. Each offers different features depending on your needs. WordPress is great for customization, while Wix is ideal for ease of use without technical skills.
Keep it simple and focused. Highlight the key services you offer and make sure to include a clear Call-to-Action (CTA) like “Book an Appointment” or “Get in Touch” so visitors know their next step.
Track metrics like the number of visitors, how long they stay on your page, and whether they take actions like booking an appointment. Regularly review this data to make improvements.
Related articles
.webp)
Telehealth, simply put, is some type of delivery. It helps to provide health care services when patients and health professionals are separated by distance via remote technologies. Telehealth uses technologies for the exchange of information for the diagnosis and treatment of diseases and injuries for the patients. Live video conferencing, mobile health apps and remote patient monitoring (RPM) are examples of technologies used in telehealth.
It’s Healthtech time
Telehealth is improving the healthcare industry in many ways, the first of which is increasing its accessibility. Telehealth allows specialists to visit patients virtually from any place in the world by improving access as well as making a wider range of healthcare services available via telemedicine.
Today’s Telehealth environment consists of a global ecosystem of myriad digital solutions. There are two alarming end-users trends that you should pay attention to when considering Telehealth design and solutions.
- What doctors struggle the most with
- What people looking for when they choose the healthcare providers

Providing virtualized healthcare to any place in the world is one of the best-known applications of telehealth. But the medical industry is using it in several other ways, including:
- Urgent help in distance. It can be a headache or sore throat. There are many medical complaints that aren’t life-threatening, but they need some professional attention. Virtual care services allow skilled health personnel to treat minor complaints, including providing appropriate prescriptions.
- Stay in contact. Qualified medical personnel can use messages, phone and video calls to follow up the patients after they are discharged from the hospital. This way, improves worker productivity from not having to take time off and travel to appointments and ensures each patient understands the importance and carries out recovery and treatment plans. Also, telehealth platforms can automate much of the communication process, including sending reminders to the patients.
- Updating online prescription. Telehealth provides the possibility to update online prescriptions even If you’ve been unable to get to your own doctor to refill a current prescription.
- Monitoring of patients with chronic conditions. For these patients, it is one of the best benefits of telehealth. Virtual care helps those who have mobility issues, mental illness, and other conditions that may prevent them from going to in person medical appointments.
- Facilitating care to rural areas. Telehealth is a great way to provide patients in places that are outside the current health delivery system with access to quality care. In the event of a medical emergency, telemedicine makes it possible to coordinate with specialists in other regions without wasting time to provide patients with effective treatment.
- Increased patient satisfaction. In addition to referrals, many patients assess and choose healthcare providers through online reviews. As such, you must have positive reviews that will attract new patients. Telemedicine helps improve patient satisfaction scores by providing convenience of care and reducing wait time. The providers have the opportunity to offer remote services to the patients and make it convenient for them to receive medical attention. Also, this process reduces in-hospital visits.
All right, let’s move on to the design
Telehealth platforms require a unique approach to service design. As you can imagine, it isn’t the same way, say, for a food delivery service.
Telehealth is not about technology, it’s about people
That’s a good reminder that you need to create space for telehealth that provides human connections and assistance. The healthcare industry is unique and complex, and it can be challenging to set up. Establishing fundamental principles to guide telehealth design will help us keep sight of the user experience and user journey throughout different healthcare systems.

In this article, we’ll highlight the important and unique challenges in the design faced by digital health companies and startups.
- Research. To begin, you need a shared understanding of how you usually provide face to face care. You will need a solid understanding of the patient’s journey through your service.
- Construction. Based on our research findings, you need to discuss them with your client. There is the moment when you draft innovative solutions and delve into user journeys. We identify the most promising ideas based on jointly developed options. Service design can be quite abstract. The main idea is to find key service touchpoints.
- Strategize and develop Next, it is necessary to work with your clients to co-create a product roadmap and business strategy. Together with medical professionals, you develop an extensive plan of the envisioned telehealth design, listing interactions between users, new processes, and workflows. Also, don’t forget to define the physical and digital things that will be used. By the end of this step, you’ve created visual content and material to start the development process.
- Taking it live. From our experience, we recommend turning digital and physical artifacts into minimum viable products (MVP). MVP is essential to clinical trials. There is a product that has basic features and can be used to get feedback from the users.
After the main last modifications, it’s time for launch! At this stage, it’s important to provide testing to ensure that the envisioned workflow and interactions are happening as intended.
That’s it

To sum up, telemedicine is full of benefits for patients and healthcare providers. When people have had a taste of telehealth, they’re willing to continue using this convenient care option.
Telehealth’s future looks very bright, doesn’t it?
Also, it’s obvious to see continued strong growth and upgrade around devices, communication channels, telemedicine services, and telehealth platforms. Look for them to become increasingly user-friendly and convenient. As this happens, we can expect to see a resulting increase in users. After all, good design is the right way to improve engagement.
Designers will need to imagine themselves in both the patients’ and providers’ roles during the preparation for the start to create the design for telehealth. Every detail of a visit, from the method of scheduling appointments to the distribution of follow-up procedures, should be carefully planned to ensure the best outcomes and clear understanding.
We can expect to see digital pharmacies, virtual appointments, online triage tools, and remote monitoring gain in popularity. It may well become the new normal in healthcare.

With the global aging population and the rise of chronic diseases, the remote patient monitoring market is booming as ever. From 2023 to 2024, it grew from $30.97B to $36.31B. And it won't stop here. Insider Intelligence predicts 70.6M US patients will use software for remote patient monitoring by 2025.
We can't overstate the importance of remote patient monitoring software. Such apps improve access to care, reduce hospital readmissions, and help save up to 60% on hospital visits, which results in higher-quality treatment in the comfort of patients' homes.
And benefits don't end up here. With ongoing digitalization via IoT and modernization of the healthcare system, don't wait for the best time for remote patient monitoring software development. The best time is now.
We've detailed remote patient monitoring apps below and covered their benefits, architecture, and top examples. You'll also see how Darly Solutions crafted an app for the health tech company. Read on, and stay tuned.
RPM monitoring software—is a digital tool for wearables, mobile apps, and medical devices that collects, analyzes, and shares patient data with medical personnel. Heart rate, blood sugar, and oxygen levels are among the most vital metrics. RPM software scores help catch health issues early, manage chronic conditions, and aid post-operative recovery.

How remote patient monitoring software works
From heart rate to blood glucose, each RPM system is designed to monitor a specific aspect of the body. However, elements included in any remote patient monitoring software development are typically the same. This is how the RPM system works:
- Collects and exchanges data. Once calibrated, the devices send the data from the patient to the provider. The devices must have a Wi-Fi or LTE adapter for successful transfer. The data can also be sent via Bluetooth to IoT mobile apps via RPM devices.
- Centralizes storage. The provider securely stores the data collected from various sources, including patient devices, analytics systems, and e-medicine.
- Analyze. The data is processed using advanced AI for management and analytics. Alerts are sent to caregivers, providers, and patients as needed, per their preferences.
- Broadcasts. Remote monitoring systems become telemedicine platforms when integrated with communication features like video conferencing, simplifying doctor-patient interaction.
- Sends emergency notifications. When doctors identify health issues requiring daily monitoring, they oversee the data collected by the RPM system. Notably, it can notify emergency services if a patient needs urgent care. For non-urgent cases, patients can receive instructions for the next steps. However, HIPAA and similar regulations may restrict including sensitive patient information in certain notifications to protect privacy.
Why build remote patient monitoring software? Key advantages
Nevertheless, the RPM is part of the broader automation revolution; it has universal healthcare benefits overall. Let's examine the main of them:
Better access to health services
With remote patient monitoring software, medical services have no geographical boundaries. Patients can get timely medical attention at home and manage their health, fostering a greater sense of control under health conditions.
Improved patient outcomes
A study found that RPM cut hospital admissions for chronic care complications by 19% to 41%, which results in improved patient outcomes.
Cost-effective care with reduced readmissions
The average cost of hospital readmission is about $15,200, which makes the prevention of readmissions through remote patient monitoring software financially beneficial for both patients and providers. Even more, it is a well-established fact that early detection generally translates to lower healthcare costs.
Better client engagement and satisfaction
Over 94% of patients are satisfied with RPM's care. It sparks their curiosity about their health and boosts engagement. Such an increased sense of involvement often inspires commitment to treatment plans.
Early detection and timely intervention
The CDC reports that RPM can cut chronic disease complications by 40%. This highlights the need for swift intervention to reduce health risks.
Components of remote patient monitoring software
There is no one-fit RPM soft, as it differs in nature. However, each patient monitoring system generally has 3 to 5 basic components. Let’s delve into them:
Personal monitoring devices
From continuous glucose and heart rate monitors to blood pressure cuffs, digital scales, and peak flow meters.
Patient-side mobile applications
Prioritize user experience, making it easy for patients to access their health data. Additionally, they offer features like medication reminders and secure chats with healthcare providers.
Cloud database
Cloud repositories allow healthcare providers to store large patient data securely. They are scalable and accessible, adapting to growing datasets for long-term monitoring.
Hospital-side web app
These applications are part of hospital management software. They ensure compliance, enable integration, and support decision-making. Additionally, they offer reporting, notifications, and analytics to improve patient care.
Other modules
These comprise decision support systems, reporting tools, notification systems, and analytics platforms.
Essential features in remote patient monitoring solutions
Here are the essential features of a remote patient monitoring (RPM) solution:
Real-time tracking of patient vital signs
Wearable sensors, fitness trackers, blood pressure monitors, and glucose meters perfectly gather and handle real-time health metrics. Then, this data is sent to healthcare providers and added to Electronic Health Records (EHRs) for timely interventions and informed decisions preventing complications.
Intuitive interfaces and user-friendly features
Machines must be easy to set up, a breeze to wear, and simple to operate. Meanwhile, patients should access their data effortlessly through a smooth web or mobile app to track their progress. This connection allows seamless communication with healthcare providers, ensuring everyone's on the same page.
Accessibility features
Ultimately, create a system with all users in mind. Consider accessibility guidelines like WCAG and CVAA to pave the way for inclusive innovation. Encompass voice control for effortless data entry, navigation, and text-to-speech features to support people with dyslexia and other disabilities. Moreover, a patient-first design shines with screen reader compatibility, high-contrast modes, and a crystal-clear interface.
Personalized risk alerts and reminders
For swift and customizable alerts, the RPM system must adjust thresholds. For example, alerts can be sent when vital signs fall outside preset limits. This enables timely intervention to reduce the risk of adverse events.
Safe data transmission and storage
Patient data security is a top priority in remote patient monitoring software development. Thus, apps must comply with all regulations like HIPAA, as they protect the privacy and security of patient data and save from hefty fines.
Smooth EHR integration
EHR integration allows the automatic transfer of RPM data, giving healthcare providers access to complete patient histories for better decision-making and outcomes.
Reports and analysis of patient health data
Advanced analytics and reporting in remote patient monitoring software development provide valuable data insights for healthcare professionals (for data-driven decisions) and patients (to motivate healthier choices).
The architecture of a remote patient monitoring system
Remote health monitoring systems are designed with a multi-layered architecture. Basically, it has five core components that enable uninterrupted data flow within the system. Let’s break into the point of the whole structure:

Smart-connected sensors for health tracking
The sensor layer comprises remote monitoring devices such as EKGs, sleep trackers, smartwatches, and blood pressure monitors. Then, they transmit this data to the dedicated mobile app via Bluetooth or to the cloud via the Internet.
Patient interface
Patient-facing RPM apps collect real-time health data from connected medical devices, allowing manual entry of symptoms and medication intake. RPM apps often include data visualizations for tracking health trends and may have integrated telemedicine features, such as video conferencing for appointments, follow-ups, prescriptions, and virtual consultations.
Cloud RPM server
Cloud services form the core of RPM systems, providing secure storage, processing, and data analysis from devices and the RPM app. This engine also integrates with EHR systems to access patient health information (PHI) in FHIR format. It can identify trends, such as early signs of complications.
Medical staff dashboard
Patient data flows bidirectionally between the medical staff interface and the cloud RPM server, enabling effective management by care teams.
- Data visualization module.
Via charts and graphs that show trends in vital signs, medication adherence, and other data, the module gives providers a 360-degree view of the patient. - Alert management module.
The system promptly alerts clinicians to critical situations and device failures in real-time. - Reporting module.
The module generates custom reports on patient data, which hugely help track progress and gain insights over time. - Communication module.
This module has two-way messaging, video chat, and/or telephony integration and is made for secure, remote communication between clinicians and patients. - Appointment management module.
This module handles appointment scheduling and patient-provider communication, allowing both patients and providers to request appointments.
Depending on the organization's needs, a doctor-facing RPM interface can include other modules, such as patient management, care plans, and patient education.
Admin web panel
A key part of the RPM architecture is a control dashboard. It helps with admin tasks like configuring roles, managing patients, and setting alarms.
Remote patient monitoring software development: Key steps
Once you have a clear idea for your software product, find an experienced dev company to implement it. When contacting your tech partner, you don't need detailed software requirements. A high-level understanding of the functionalities is enough to get started for any custom healthcare software development services stages. Let’s break them down:

Step 1: Requirement collection and analysis
The process starts by refining your product vision. Then, define project goals based on the health conditions your RPM solution will address. Your team will then identify core functions, pick the best tech stack, and plan the app's architecture. If integration with systems like EHRs is required, your tech partner will ensure compatibility.
Step 2: Outlining security and compliance requirements
Remote patient monitoring software must follow HIPAA and FDA rules. The development team implements audit trails, encryption, secure cloud storage, and APIs for secure communication to ensure data security and privacy. They also define a testing strategy for the pre- and post-production phases.
Step 3: Prototyping and design
To create an intuitive, user-first staff interface, UX/UI teams conduct user research to define user personas and journeys. Based on this research, designers create a prototype reflecting both the initial vision and user needs, gathering feedback on the user experience. The team prioritizes a clean, engaging, and accessible design. Based on feedback, they will refine the prototype and send the final designs to the dev team.
Step 4: Development and integration
Tech experts will use best practices to develop your RPM system iteratively to meet regulatory compliance. This work may include front and backend components, patient and doctor apps, and integration of medical devices.
Step 5: Testing
When it comes to RPM development—thorough software testing is as important as the development itself. After testing, developers should prioritize IoMT device compatibility. They must also ensure smooth integration with the RPM system for the most stability.
Step 6: Ongoing improvements
After deployment, the dev team monitors and tunes the RPM system to meet business and tech needs. They provide training and support for patients and healthcare professionals.
Beyond monitoring and troubleshooting, your tech team will prepare a roadmap for software updates. This will enhance the system's features and security in the future.
RPM Software Deployment: Challenges and Practical Solutions
Let us explore the most notable challenges organizations encounter while deploying their RPM.
Regulatory compliance
RPM's compliance with HIPAA and GDPR relies on strong data security and privacy. It must meet standards like ISO 27001 and IEC 62304 for this.
What to do:
- Develop a comprehensive compliance framework according to all requirements like HIPAA, GDPR, FTC (Federal Trade Commission), FDA regulations, and more.
- Conduct regular audits and assessments outlining clear policies and protocols for staff.
- Provide ongoing staff training to ensure they are aware of their responsibilities.
Data security and privacy
Healthcare organizations handle sensitive patient data (vitals, medical history, personal details, reports, treatment plans). Unauthorized access poses the risk of data breaches and subsequent fines that could total millions of dollars.
What to do:
- Use encryption techniques of RPM-collected data, telehealth appointment recordings, and other sensitive patient health data.
- Implement strong authentication and role-based access.
- Regular audits and security assessments.
- Conduct employee and patient training.
- Adopt role-based access control (RBAC)
Technology integration and compatibility
Outdated systems may lack compatibility, hindering integration and impacting data accuracy and security. Integrating EHR and clinical systems can also be difficult, affecting data sharing and patient care. Ensuring interoperability for seamless data exchange adds another layer of complexity.
What to do:
- Assess current infrastructure compatibility.
- Follow interoperability standards and protocols.
- Adopt HL7 and FHIR standards.
Cost-benefit analysis
RPM implementation presents a cost-benefit challenge for healthcare organizations. While offering benefits like improved outcomes and enhanced care, the substantial upfront investment in hardware, software, infrastructure, licensing, staff training, regulatory compliance, and data security must be carefully weighed.
What to do:
- Conduct thorough cost assessments.
- Estimate ROI and potential cost savings.
- Strategically allocate resources.
Data precision and accuracy
Inaccurate data transmission from RPM devices (e.g., wearables) poses a significant challenge, potentially leading to misdiagnosis and compromised treatment. Several factors can affect data accuracy, including device calibration, signal interference, network issues, and device quality.
What to do:
- Choose quality sensors and wearables.
- Regularly calibrate devices.
- Implement quality assurance measures.
Lack of patient engagement
Some patients fear switching to modern healthcare and its tech just because they are used to in-person hospital visits. Thus, using the devices, checking vital signs, and messaging the doctor may be hard for the patients.
What to do:
- Prioritize a user-friendly interface.
- Craft tutorials for device usage and RPM data analytics interpretation.
- Incorporate gamification elements (e.g., badges, progress tracking) to incentivize engagement.
- Bridge language barriers for diverse patient populations by providing support in multiple languages.
RPM software development cost
The cost of developing Remote Patient Monitoring (RPM) software varies based on complexity, features, and the development team's location. Here’s a breakdown of the estimated costs associated with RPM software development:
- Basic RPM application ranges from $50K–$70K.
- Standard RPM software ranges from $100K–$400K or higher, depending on the specific requirements and features.
- Costs can be $500K or more for advanced solutions with complex systems and integrations.
Both building an in-house tech team and outsourcing software development come with significant costs: salaries/recruitment expenses versus hourly rates and vendor fees. Without proper research, you risk overpaying for a software solution—whether through in-house hiring costs or outsourcing fees—or settling for a product that doesn't meet your requirements.
To calculate the precise budget for your RPM software development idea—please fill out this form. We will contact you shortly.
Best RPM software
Here are some popular remote patient monitoring use cases that might inspire you for your own:
CoachCare
CoachCare was founded over a decade ago, now supports over 3,000 organizations, and serves over 150,000 patients. Boasting a remarkable RPM, it claims a success rate exceeding 95%. It advocates for RPM coverage and collaborates with groups like CMS and AMA. CoachCare's tech lets patients log vital health metrics via an app. Its simplicity boosts engagement. Experts recognize its support of the healthcare industry.

Healee
Healee is a health tech company founded in 2017, now handles over 700,000 visits per month, both onsite and virtual, and supports 5,000 physicians across 200 clinics. With EHR, e-prescription, and billing integrations, the Healee platform streamlines healthcare delivery in wellness, mental health, chronic care, and women's health.

Doctolib
Founded in Paris in 2013, Doctolib is a top healthcare booking platform. It serves over 400,000 providers and 50 million users. It handles 70 million monthly bookings in France, Germany, and Italy. It offers appointment scheduling, telemedicine, and patient messaging. These services reduce missed appointments by 60% and save doctors 1.5 hours per week on administrative tasks.

Senseonics
This company revolutionizes blood glucose monitoring. The system features a sleek, removable transmitter and a sensor expertly implanted under the skin by a healthcare pro. Connected to a mobile app, the sensor offers real-time insights, alerting patients through their smartphones or smartwatches when their glucose levels are too high. Sharing data with healthcare providers and family members becomes a breeze, ensuring optimal treatment strategies.
Currently, around 6,000 users benefit from the Eversense CGM system. By 2025, Senseonics aims to double that number.

Teladoc
Established in 2006, this Hoboken, New Jersey-based powerhouse is revolutionizing healthcare. With an extensive network of licensed professionals, HRS proudly claims the #1 spot in KLAS’ ‘Top Remote Patient Monitoring Companies’ from 2020 to 2023.
HRS offers its innovative PatientConnect platform, featuring over 90 tailored RPM plans for healthcare providers. Beyond monitoring, HRS embraces holistic care, providing behavioral health services like therapy and psychiatry, ensuring a comprehensive touch on every aspect of patient wellbeing.

Improving patient outcomes with RPM software: A case by Darly Solutions
In particular, the health tech company approached us about remote patient monitoring software development. They faced challenges with patient tech literacy, especially among the elderly. There was a risk of data overload for providers. Patient engagement was inconsistent. There was a need for system integration, like with EHRs. Plus, they had to ensure data privacy and security (HIPAA compliance).
Since the deadline was tight and there were a lot of high-precision requirements—we created a detailed plan for the project, assigned UX/UI design, web development, QA, and project management tasks, and pinpointed the tech stack.
Technology stack
We understood that choosing the right technology stack was crucial for success. After thorough consideration, we selected:
- Angular: For building dynamic web applications.
- HTML/CSS: For structuring and formatting the user’s interface.
- Docker: To streamline deployment through containerization.
- ngRx: For effective state management.
- TailwindCSS: To enable rapid UI development.
- NGX Pagination: For efficient handling of large datasets.
- JSON: For smooth and efficient data transfer between client and server.
Our efforts paid off. We launched the product on time, meeting all design, functionality, and quality standards. Our client now has a competitive product that is well-placed to thrive in the innovative telemedicine sector.

Read the details of the case here.
Wrapping up
Rising public interest, health concerns, and tech advances drive the RPM market to new heights in solutions and revenue. As we noted earlier, these technologies enable 24/7 health monitoring. They also provide remote populations with access to quality treatments.
Doctors, nurses, and other healthcare staff should focus less on routine, manual tasks in the next few years. They should focus on saving lives and providing treatment, which RPM can support perfectly. It can greatly reduce burnout and ease stress on global healthcare systems while driving market share to higher results and stakeholder benefits.
This is a great time if you're considering developing your RPM solution.

The future of healthcare is digital. In 2022 alone, the global patient portal market reached $2.9B, as the Grand View Research reports. By 2030, it’s projected to grow even higher—at a CAGR of 19.44%. This trend reflects how public and private healthcare organizations strive to digitize paper documentation and automate everyday business operations.
Indeed, the stakes in healthcare are high. Even minor errors can lead to incorrect diagnoses and worsen patients’ conditions. This is where patient portal software greatly minimizes errors, particularly those caused by human factors
Below, read on how to create a patient portal. We’ll analyze the target audience’s needs, dive into the most successful examples of its implementation, and examine the nature of the target audience's requirements.
What is a patient portal system?
An online patient portal is a web or mobile solution (usually for Android and iOS platforms) that gives patients access to medical records, helps schedule appointments in a few clicks, and easily communicate with healthcare providers at any time.
By automating the interaction between the parties via the patient portal, organizations can improve the quality of care while making their services more accessible and convenient for patients.
In particular, modern patient portal requirements are:
- Fast and secure access to their medical data and records with guaranteed privacy protection.
- High-quality medical services without the need to wait in long queues.
- A clear understanding of the treatment plan and progress.
Healthcare organizations instead aim to:
- Reduce their administrative costs – in particular, for maintaining paper documentation.
- Maximize personnel efficiency without the risk of burnout.
- Increase patient satisfaction through transparent interaction and remote patient monitoring.
- Comply with the healthcare regulations.
- Reach a new level of income by reducing expenses and attracting new patients.
That is why the patient portal system is the one-stop solution that, if implemented correctly, covers all the above-mentioned needs. This is typically achieved through the following features:
- Access to medical records (including medical history and test results).
- Appointment booking (with the option to select the date, time, and doctor).
- Online consultations (for example, via video calls and chats with doctors).
- Repeat prescription orders (automatic issuance of electronic prescriptions and reminders for refills).
- Online bill payment.
- Personal data management (including patient contact information).
- Push notifications (reminders for upcoming visits, tests, vaccinations, etc.).
- Educational materials.
- Feedback tools (surveys for patient satisfaction and forms for submitting complaints, etc.).
Types of patient portals: Which fits your healthcare needs?
Generally, there are two global types of patient portals: integrated and standalone. The former is presented as a component of electronic health records (EMR/EHR) and is fully tied to the infrastructure of a healthcare facility. Integrated portals ensure uninterrupted data exchange between doctors and patients but, in the case of ready-made solutions, are limited by the functionality offered by the specific healthcare provider.

Standalone portals, however, come in two forms: SaaS and on-premise. The former are hosted in the cloud and are available by subscription, which is especially convenient for healthcare providers within small organizations. Their advantage is quick deployment and configuration. At the same time, their customization options are often limited.
As for the second category, these are software solutions installed on local servers of a specific healthcare organization. They provide comprehensive control over data but require significant infrastructure and support costs. They can also be difficult to scale and integrate with third-party solutions.
It is worth noting that every medical organization has its own regular processes and specific business tasks distributed among different departments. In particular:
- The reception desk keeps track of patient records.
- Laboratories collect, process, and store test results.
- The finance department is responsible for payments and insurance processes.
- Doctors and medical personnel work with medical records and appointments.
All the above processes can rarely be integrated into a single system, which makes it difficult to automate them using only one off-the-shelf patient portal. Moreover, medical institutions vary greatly in specialization (including clinics, dentistry, laboratories, hospitals, etc.), and ready-made products do not always meet their needs.
If we add to this the need to comply with regional security standards for patient data, it becomes clear that out-of-the-box solutions may not be viable. This is the main reason why healthcare organizations are increasingly resorting to custom healthcare portal development.
Patient portal requirements: Key features and functionalities
Now, let's check the main functionalities and features that should be integrated into a patient portal.
User authentication and access management system
This portal component uses OAuth 2.0 and OpenID Connect for secure login. It protects users' credentials and enables multi-factor authentication. Usually, developers provide multi-level access with restrictions based on user roles (including patients, doctors, administrators, etc.).
At the same time, when implementing role-based access, it is important to adhere to widely recognized patient data security policies, such as HIPAA and GDPR. Specifically, doctors and administrators should have full access to all patient data. In contrast, individual patients should only be able to view, edit, and delete their info.
Medical data storage
The storage is located on local or cloud servers using AES-256 and TLS 1.3 for data encryption. By the way, many cloud vendors have ready-made solutions for healthcare organizations that meet the standards of patient data privacy (including AWS HealthLake, Azure Healthcare, and others). It is also crucial to ensure that such storage is protected against data misuse and unauthorized access.
Integration with EHR systems
This integration is necessary for consolidating patient data. Thus, developers must adhere to FHIR and HL7 standards to ensure compatibility and data exchange. As for the integration itself, if we are not talking about legacy solutions, it is carried out through an API.
Finally, to ensure that the patient portal system complies with the requirements of the National Coordinator for Health Information Technology (particularly, the ONC's Cures Act), it is essential that the platform could get full access to the patient, with all the ability to edit and delete.
Appointment schedules, doctors’ cards, and telemedicine tools
The first two components involve creating a catalog with therapists’ information and a scheduling system where patients can book visits. This can be achieved through RESTful API to synchronize with hospital calendars. Also, integrating with trusted video communication platforms like Zoom Healthcare can facilitate direct communication between patients and doctors.

Automation of bill calculations and online payments
Online payments are processed through integrations with payment gateways like Stripe or PayPal. In general, they must support PCI DSS standards. As for the automated billing system, this is essentially a regular calculator that “pulls up” data on the cost of services selected by the patient and sums them up (minus insurance and benefits, if any).
Integration with wearable devices
This is necessary so that doctors can monitor the condition of patients in real time. To do this, developers use APIs to collect data from devices (for example, from Apple HealthKit or Google Fit, as well as more specialized IoT equipment). At the same time, they must also implement a mechanism for obtaining prior patient consent to collect personal data.
Messaging
It also makes sense to integrate a chat (with the ability to attach media files) for interaction with doctors, supporting end-to-end encryption (E2E) and using WebSockets protocols that provide real-time messaging.
User dashboards
The patient portal needs an interface for each user role. Basically, it should adapt the data and tools for doctors, admins, and patients. Among other things, it can also be enriched with advanced analytical tools. For example, Power BI or Tableau can be used to generate reports and visualize data (assessing attendance dynamics, treatment results, patient satisfaction, etc.).
How to develop a patient portal software: From concept to launch
When it comes to custom solutions, our telehealth website development services are provided in several subsequent stages. Let’s consider them in detail.
Ideation and requirements analysis
At this stage, our team consolidates the portal concept of custom healthcare portal development, according to your business goals, unique aspects of your internal business processes and IT infrastructure, the needs of the target audience, and an analysis of competitors’ strengths and weaknesses. Based on this blueprint, we create documentation indicating functional and non-functional requirements.
Architecture design
From now on, our patient portal development team has everything ready to define the project's technological stack (for the frontend, backend, and database) and choose a specific architectural approach. We also approve the necessary third-party Integrations (including EHR, payment gateways, telemedicine solutions, etc.).
Finally, we select tools and protocols to ensure our portal has a proper security level, including data encryption, user authentication/authorization methods, diagrams of interaction between components, etc.
UI/UX design
This stage involves building interface prototypes and gradually transforming them into a full-fledged design after usability testing. At the same time, our patient portal app development experts always take into account the requirements for the accessibility of the user interface. Basically, they are most accurately outlined in the WCAG 2.1 and ADA guidelines.
Development
Now, we can start working on the frontend and backend of the patient portal. Once individual functional modules are ready, we conduct unit testing to prevent hard-to-fix bugs at later stages of the project. This stage also involves the implementation of security mechanisms and integration with third-party solutions.
Testing and quality control
When the code base is ready, our patient portal development experts conduct rigorous testing, including functional, load, security, usability, etc. This stage ensures that the solution meets the best specs and software quality standards in healthcare.

Deployment and launch
Before launching the portal, we prepare all the necessary infrastructure, build a CI/CD pipeline, and set up a monitoring system. If needed, we can train your staff on how to use the portal. After all the previous stages are checked—we usually start deployment.
Post-release support and updates
To better understand its further optimization, our patient portal development experts regularly check the portal’s logs and metrics, collecting feedback. In addition, as post-release bugs are discovered, we fix them and, if necessary, implement new features.
Understanding the needs of your patients
A patient portal and medical website design should fully adapt to the target audience's problems. That is why it is essential to define them in advance. Based on our experience, we would like to highlight the following ones:
- Long wait time when making an appointment.
Patients often encounter long wait times in phone and in-person queues. A patient portal can help. It lets users book online appointments 24/7 and choose a specialist. In addition, it sends SMS or push notifications to remind patients about upcoming visits. - Lack of full access to medical data.
Many patients are forced to visit clinics because healthcare organizations still document their test results manually. The patient portal gives access to electronic medical records, test results, and doctor recommendations, which can be easily downloaded or saved (for offline access). - Lack of understanding of the treatment plans.
Patients may find it difficult to track their treatments' progress, which may result in forgotten, delayed, or canceled visits and procedures. To prevent this, portals display the treatment plan and the current status of therapy. In addition, patients get notifications about upcoming procedures, calendars, and recommendations, which is very smart. - Difficulties in paying for medical services.
The need for patients to be physically present makes offline payments resource-intensive. Patient portals eliminate this headache with integrated payment systems, allowing users to view their payment history and current bills in just a few clicks. - Insufficient communication with the attending physician.
In-person appointments to explain test results and treatment plans can be time-consuming for both patients and healthcare providers. Patient portals streamline this process with online chat and video calling capabilities. - Weak control over the treatment of chronic conditions.
Patients with chronic conditions often lack convenient tools for regular monitoring. Portals can address this with real-time health data visualization, medication reminders, and appointment scheduling, as well as integrating with wearable devices for continuous data collection. - Low involvement in the treatment process.
Since some patients find it difficult to understand how their actions affect treatment results, the patient portal development team can also add interactive tools to the portal to track patients' treatment progress or provide educational materials.
Gamification elements can enhance the effect.

Patient portal development challenges and solutions
In this section, we will analyze the most typical challenges of patient portal software development and the most effective ways to overcome them.
- Ensuring compliance with regulations.
Telemedicine hugely relies on strong data protection, first—to comply with laws like HIPAA and GDPR, and second—obviously, it is for patient trust. End-to-end encryption, role-based access control (RBAC), and multi-factor authentication are key practices, along with regular system audits and penetration testing to ensure security. - Integration with existing solutions in the organization's IT infrastructure.
Many healthcare providers still use older systems that don't easily connect with modern software. To solve this, developers can build 'middleware'—software that acts as a bridge—to automate data transfer between patient portals and other systems, ensuring everything works smoothly. - Ensuring high performance and scalability.
Many portals frequently freeze when user traffic exceeds the original design capacity. To solve this, developers can host the portal in a cloud environment that scales as users grow and use a microservice architecture to balance the workload across the portal's services. Additionally, they can optimize a database through indexing and caching. - Ensuring intuitiveness.
Since the target audience of patient portals is diverse (including the elderly, people with disabilities, and people with no technical literacy), there should be universal access to the full use of all portal functionality. To solve this, during the development of the patient portal software, the team should conduct user research and surveys to guide and optimize the software effectively. They should also adhere to the compliance of this software with the WCAG 2.1 guidelines.
- Accessibility on mobile OSes.
As patients increasingly manage their healthcare on digital devices, patient portals must offer a seamless mobile experience. Poor mobile optimization can lead to slow loading times and display issues. Developers can address this by building progressive web apps (PWAs) or cross-platform solutions, implementing offline access for key features, and optimizing content loading with techniques like lazy loading and data compression.
Patient portal software cost: What to expect
The cost of telemedicine app development depends on project complexity, the team involved in the patient portal software development process, geographic location, development timeline, and the scope of features. Let's examine each of the points that influenced the cost in detail:
1. Project complexity
- Basic consultation apps with user registration, appointment scheduling, video calls, and messaging: $30K-$100K.
- Advanced telehealth platforms with multi-user portals, integrated EHR, and health analytics: $100K-$300K+.
- Telemedicine platforms with IoT/AI integration: $250K-$500K.
2. Team composition
A typical team for creating a basic patient portal usually includes:
- 2-3 developers: Where 1-2 are front-end developers, and 1 back-end developer.
- The project manager: Tracks the project goals and wins.
- QA specialist: Tests the app to make sure it works correctly.
3. Development timeline
The time it takes for patient portal software development also affects costs. Most telemedicine apps take between 2 to 6 months to develop:
- Simple apps usually take about 2-3 months.
- More complex apps may take up to 6-12 months.
4. Geographic location
American tech experts can be expensive. For example, a front-end developer might earn over $100K annually, about $8K monthly. He might charge between $70K-$80K for a three-month project.
Hiring remote developers can save you money. For instance, Eastern European developers or other regions often charge between $2,500 and $3,500 monthly. You can easily hire a similar team for about $30K to $40K for the same project.
If you want to find out the patient portal software cost in your case, please fill out this contact form.
Improving patient outcomes with data management: A case by Darly Solutions
From theory to practice—let's examine our relevant Darly Solutions experience through a top case from our portfolio.
In particular, we were approached by a HealthTech company specializing in consolidating unstructured medical data for organizations in the healthcare sector. They needed a custom digital solution to monitor clinical data.
Faced with a tight deadline and the need for high precision, we meticulously planned and assigned all the UX/UI design, web development, QA, and project management tasks. We also reviewed the team's work schedule, as some members had to work overtime. Finally, we carefully chose the technology stack. We settled on Angular, HTML, CSS, Docker, ngRx, TailwindCSS, NGX Pagination, and JSON.
Finally, our efforts paid off. We launched the product on time and met all design, functionality, and quality standards. As a result, the client has a competitive product with all the chances to thrive in the innovative telemedicine sector.

Find out more about this case here.
The future of patient portal development
In general, the future of patient portal software development is closely connected with the fast development of modern technologies, such as:
- Artificial intelligence and machine learning.
These technologies will personalize the portal and related healthcare services. AI-powered chatbots, including ones with recognition of human voice commands, will assist with scheduling appointments and answering FAQs. In advance, machine learning can also analyze patient data and symptoms to provide preliminary diagnoses.
- Blockchain.
The introduction of blockchain technologies in patient portals can be aimed at more secure storage of their medical records and ensuring access to them only to authorized users. In addition, with its help, each interaction with data (adding, editing, and deleting) will be recorded, increasing the system's transparency.
- Virtual and augmented reality.
These technologies can form the basis of next-generation telemedicine solutions. In particular, in the future, patients will be able to interact with doctors at a distance without reducing the quality of service. AR interfaces will also help inform patients about upcoming treatment plans.
- Internet of Things and integration with wearable devices.
IoT solutions can provide end-to-end RPM in real-time (for example, portals will be able to collect and analyze data on the patient's pulse, blood pressure, oxygen level, and activity). Based on this data, doctors can receive instant notifications of critical changes regardless of patients' locations.
- Big data and business intelligence.
Examples of patient portals use big data to identify trends, such as tracking the rise in the incidence of a particular virus or assessing the effectiveness of treatments. Also, end-to-end medical data analysis ensures timely prediction of exacerbation of chronic diseases. Finally, doctors and administrators of healthcare institutions will be able to monitor departments' workloads and optimize appointment scheduling.
- Biometric identification.
Biometric mechanisms can give users access to the portal through fingerprint, face, or voice scanning, making the authorization process more secure and easier.
Conclusion
Now you know everything about patient portal development and can safely choose an off-the-shelf solution or search for a team to implement a custom one. If the second option is closer to you but you would not like to turn the search process into a real headache, you can contact us, and we will be happy to discuss the details of our future cooperation to implement your idea.
Connect with us
.webp)
We are a tech partner that delivers ingenious digital solutions, engineering and vertical services for industry leaders powered by vetted talents.